
Regression
Oliver d’Pug

This document shows how to use R/Studio to create output that is similar to that shown
in Lock^5 (3rd Ed.).

Section 9.1

In this section we look at inference for slope and correlation. To do so we need to import
some data. We start by looking at the cricket chirp data from the book’s data repository.

### Read the CSV file
crickets = read.csv("http://facweb1.redlands.edu/fac/jim_bentley/Data/Lock5Ed3/Lock5Data3eCSV/CricketChirps.csv")
### See what is in the "crickets" dataframe to see if it worked
crickets

Temperature Chirps
1 54.5 81
2 59.5 97
3 63.5 103
4 67.5 123
5 72.0 150
6 78.5 182
7 83.0 195

The above seven observations look to be the same as those in the original CSV file.

Suppose that we are interested in predicting Temperature from the number of Chirps that
the crickets generate. We can plot the data to see if the relationship appears to be linear.

### Load the lattice package to make plotting easy
library(lattice)
### Now plot the points. Note the use of ~ instead of = in the formula
xyplot(Temperature ~ Chirps, data=crickets)
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Although there are not many points, the relationship appears to be fairly linear. R makes
getting the regression equation easy.

### Get the regression equation by fitting the linear model (lm)
lm(Temperature ~ Chirps, data=crickets)

Call:
lm(formula = Temperature ~ Chirps, data = crickets)

Coefficients:
(Intercept) Chirps

37.6786 0.2307

### Save the linear model for later use
crickets.lm = lm(Temperature ~ Chirps, data=crickets)
### Check to see if it was saved
crickets.lm

Call:
lm(formula = Temperature ~ Chirps, data = crickets)

Coefficients:
(Intercept) Chirps

37.6786 0.2307
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### Plot the points and the regression line using p and r for points and regression
xyplot(Temperature ~ Chirps, data=crickets, type=c("p","r"))
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The model is Temperature = 37.677 + 0.231(Chirps). What is a 95% confidence interval
for 𝛽1? Is the slope significantly different from zero? That is, does Chirps add anything to
the guess of Temperature? We can let R compute the standard error and t-value that are
needed to test 𝐻0 ∶ 𝛽1 = 0 versus 𝐻𝐴 ∶ 𝛽1 ≠ 0.

### Check that the linear model fitted above is still around
crickets.lm

Call:
lm(formula = Temperature ~ Chirps, data = crickets)

Coefficients:
(Intercept) Chirps

37.6786 0.2307

### Now get a summary that contains the coefficients and standard errors
summary(crickets.lm)

Call:
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lm(formula = Temperature ~ Chirps, data = crickets)

Residuals:
1 2 3 4 5 6 7

-1.8625 -0.5532 2.0628 1.4495 -0.2785 -1.1598 0.3416

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.67858 1.97817 19.05 7.35e-06 ***
Chirps 0.23067 0.01423 16.21 1.63e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.528 on 5 degrees of freedom
Multiple R-squared: 0.9813, Adjusted R-squared: 0.9776
F-statistic: 262.9 on 1 and 5 DF, p-value: 1.626e-05

Note that the line that starts with Chirps contains an estimate (0.23067) and a standard
error (0.01423). These values can be used to create a confidence interval for 𝛽1. We note
that the degrees of freedom for the t-distribution are 𝑑𝑓 = 7 − 2 = 5. We now compute a
95% confidence interval using 𝑏1 ± 𝑡∗

𝑛−2 ⋅ 𝑆𝐸

### Compute t-star for 5%/2 = 2.5% to the right with df=5
qt(0.025, 5, lower.tail=FALSE)

[1] 2.570582

### Compute the endpoints using the information found above
0.23067 - 2.57058 * 0.01423

[1] 0.1940906

0.23067 + 2.57058 * 0.01423

[1] 0.2672494

So, it appears that we can be 95% sure that the slope of the population model, 𝛽1, is in
the interval (0.194, 0.267). That is, we are 95% sure that the slope of the model to predict
temperature from cricket chirp rate is between 0.194 and 0.267 degrees F per chirp.

We now test to see if 𝛽1 is equal to zero.
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### Compute t and the degrees of freedom
(0.23067-0)/0.01423

[1] 16.21012

7-2

[1] 5

### Get the p-value for a two-sided alternative using the right tail of the t distribution for t = 16.2101
pt(16.2101, 5 , lower.tail=FALSE)*2

[1] 1.628652e-05

From the above we see that the t-value is 𝑡 = (0.23067 − 0)/0.01423 = 16.2101 which has
𝑑𝑓 = 7 − 2 = 5 degrees of freedom. This compares well with R’s value of 16.21.

Using either StatKey or R we can find the p-value by finding the area above 16.21 when
there are 5 degrees of freedom. Above we see that R computes the p-value as 0.0000163.
This is the same p-value presented in the table under Pr(>|t|) and indicates that We have
very strong evidence that slope is different from zero, and that temperature is related to
cricket chirp rates.

R also computes the correlation between two variables.

### Compute the correlation between temperature and chirps
cor(crickets$Temperature, crickets$Chirps)

[1] 0.9906249

### Cheat and find the correlation between all variables in the dataframe
cor(crickets)

Temperature Chirps
Temperature 1.0000000 0.9906249
Chirps 0.9906249 1.0000000
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To test 𝐻0 ∶ 𝜌 = 0 versus 𝐻𝐴 ∶ 𝜌 ≠ 0 we compute the t statistic

𝑡 = 𝑟 − 0
√1−𝑟2

𝑛−2

= 𝑟
√

𝑛 − 2√
1 − 𝑟2

which has an approximate t-distribution with 𝑛 − 2 degrees of freedom. For the cricket data
this is

### Compute the sample correlation, r
cor(crickets$Temperature, crickets$Chirps)

[1] 0.9906249

### Compute t
(0.9906249*sqrt(7-2))/sqrt(1-0.99062^2)

[1] 16.21058

This value is the same (within rounding) as the t-statistic computed using the slope. The
p-value will be the same as well. R computes these values for us more easily using the
cor.test function.

### Use cor.test to get the t-stat and p-value
cor.test(crickets$Temperature, crickets$Chirps)

Pearson's product-moment correlation

data: crickets$Temperature and crickets$Chirps
t = 16.215, df = 5, p-value = 1.626e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9352953 0.9986740

sample estimates:
cor

0.9906249

It is easy to get the coefficient of determination, 𝑅2 = 𝑟2, using R.

### Find the correlation, r
r = cor(crickets$Temperature, crickets$Chirps)
r

[1] 0.9906249
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### Now square it to get R-squared
r^2

[1] 0.9813377

For the cricket data, Chirps explains about 98.1% of the variability in Temperature via
the regression line. Stated another way, the proportion of variability in temperature that is
explained by the model based on chirp rate is about 0.981. Note that this value corresponds
to the “Multiple R-squared” value from the summary table above.

We should check the residuals to make sure that the assumptions that are made when fitting
a regression model have been satisfied. Plots of the residuals help with this.

### Replot the data with the regression line
xyplot(Temperature ~ Chirps, data=crickets, type=c("p","r"))
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### Plot the residuals against the explanatory variable
plot(crickets$Chirps, resid(crickets.lm))
abline(h=0, lty=2)
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### Plot the normal probability plot
qqnorm(resid(crickets.lm))
qqline(resid(crickets.lm))
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With only seven observations it is difficult to say that the assumptions have not been satisfied.
There do not appear to be any serious outliers or influential observations. We also do not
see any obvious departure from normality.
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